Short communication

Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure

David Gubbins *, Ashley P. Willis 1, Binod Sreenivasan

School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK

Received 1 March 2007; received in revised form 14 April 2007; accepted 18 April 2007

Abstract

Variations in the Earth’s lower mantle appear to influence the geodynamo operating in the liquid core. We present a solution to the full dynamo equations with lateral variations in heat flux on the outer boundary defined by the shear wave velocity of the lowermost mantle. The magnetic field is almost stationary and locked to the boundary, with 4 symmetrical concentrations of flux sited beneath cold mantle. This allows for the first time a direct comparison between a dynamo solution and the main features of the present geomagnetic field. Of the four main equatorially symmetric flux lobes, two (the “Siberian” pair) are centered within 5° of the corresponding Earth’s pair; the other two (the “Canadian” pair) are not quite so close but are more mobile, as the corresponding Earth’s pair have been in the last 300 years. Our study strongly suggests that geomagnetic field morphology is dominated not only by geometry related to the inner core but also by structure in the bottom few hundred kilometres of the mantle, notably the seismically fast ring beneath the Pacific rim and large fast anomalies beneath Siberia and Canada. Tighter locking of one of the pairs of flux lobes suggests the seismic anomaly beneath the Siberian side of the ring is in some way stronger than the one on the Canadian side. These locked solutions only occur for a limited parameter range with the large Ekman numbers available to numerical experiments, which explains why none have been found earlier. This solution provides an important starting point for further searches for dynamos with realistic geomagnetic fields.

© 2007 Elsevier B.V. All rights reserved.

PACS: 91.25.Cw; 91.25.Le; 91.25.Za

Keywords: Geodynamo; Time-averaged geomagnetic field; Core processes

Today’s geomagnetic field at the core-mantle boundary (CMB) has 4 main lobes symmetrically placed north and south of the equator. They are centered away from the poles and are near regions of high seismic velocity in the adjacent mantle (Figs. 1 and 2). They have moved comparatively little during the last 400 years of direct observation (Jackson et al., 2000) and show up in the time average of paleomagnetic data from the last few million years (Gubbins and Kelly, 1993; Johnson and Constable, 1995; Carlut and Courtillot, 1998; Johnson et al., 2003). Geomagnetic field geometry is dictated to a large extent by Earth’s rotation, which explains symmetry about the equator, and the tangent cylinder, which explains the location of the main flux concentrations away from the poles. If the mantle were perfectly spherically symmetric the core would be free to rotate.

* Corresponding author.
E-mail addresses: gubbins@earth.leeds.ac.uk (D. Gubbins), a.willis@bristol.ac.uk (A.P. Willis), b.sreenivasan@earth.leeds.ac.uk (B. Sreenivasan).

1 Present address: Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK.

URL: http://earth.leeds.ac.uk/~earbs (B. Sreenivasan).

0031-9201/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.pepi.2007.04.014
relative to it, eliminating any possibility of preferred longitudes. Hence, lateral variations are essential for any long term non-axisymmetric features in the magnetic field. There is further evidence to suggest that lower mantle variations affect the Earth’s dynamo: the frequency of polarity reversals changes on the very long timescale of mantle convection (Merrill and McElhinny, 1996), the poles follow preferred paths during polarity transition (Laj et al., 1991; Love, 2000), and secular variation in the Pacific is low (Doell and Cox, 1972; Coe et al., 1978). These correlations are controversial (Dormy et al., 2000) but a single theory can explain all the above features. Several geodynamo computer simulations have incorporated lower mantle seismic shear wave velocity as a proxy for heat flux out of the core (Glatzmaier et al., 1999; Bloxham, 2000a, b; Olson and Christensen, 2002; Christensen and Olson, 2003; Aubert et al., 2007) but the generated fields have fluctuated too rapidly in time to allow a straightforward correlation with the observed geomagnetic field. Correlating the radial component of magnetic field, B_r, with the shear wave velocity of the lower mantle is suggestive (Gubbins, 2003) but circumstantial because it does not compare like with like: here we report a more meaningful comparison between two magnetic fields, the observed geomagnetic field and a nearly stationary magnetic field calculated from a geodynamo model incorporating the seismic velocity map in the boundary condition.

We assume variations in the seismic shear-wave velocity, V_S, are caused by temperature differences in a thermal boundary layer in the lowermost mantle. As the CMB itself is isothermal, these temperature differences yield lateral differences in the heat flux conducted through the boundary layer. We therefore adopt variable heat flux proportional to V_S as the upper boundary condition for our geodynamo model, the constant of pro-
portionality being measured by a horizontal buoyancy parameter Ra^H. Other boundary conditions are: fixed temperature at the lower boundary with the electrically conducting inner core, an electrically insulating mantle, and no-slip of velocity at both boundaries. The inner core is fixed and not free to rotate. The aspect ratio is 0.35, close to the ratio of inner to outer core radii in the Earth. Full details of the calculations are described in a companion paper (Willis et al., 2007). The dynamo model is determined by 5 further parameters, some of which are compromised by computer limitations—nobody has any hope of achieving the Earth’s parameters in the foreseeable future because of the disparity of timescales involved, but we can hope to approach the correct dynamical regime by extrapolation from appropriate choices. To obtain simple locked solutions we chose the following:

- **Ekman number**, measuring strength of rotation, $E = 1.2 \times 10^{-4}$, chosen large enough to allow calculations for a large range of other parameters in a reasonable time but low enough for the Coriolis force to dominate in our calculations. This produces the type of equatorial symmetry seen in the geomagnetic field;
- **Rayleigh number**, measuring strength of buoyancy force, $Ra^V = 1.5 Ra^c$, where Ra^c is the critical value for the onset of non-magnetic convection with homogeneous boundary conditions ($Ra^H = 0$). The ratio Ra^V/Ra^c is made low because otherwise, with relatively large E, a strong buoyancy force would counter the Coriolis force. This is unlikely to happen in the Earth. Furthermore, a high Ra^V is unlikely to yield the simple type of near-stationary magnetic field that we seek;
- **Prandtl number**, measuring the ratio of fluid viscosity to thermal diffusivity, $Pr = 1$, Inertial forces kept large to reduce inertial forces, which upset the desired magnetogastropic force balance appropriate for the core (Sreenivasan and Jones, 2006). Inertial forces were also found to inhibit locking in non-magnetic convection (Zhang and Gubbins, 1996).
- **Roberts number**, measuring the ratio of thermal to electrical diffusivity, $q = 10$, which must be chosen large enough to generate dynamo action. Furthermore, locking seems to require a balance between diffusion and advection of heat near the outer boundary which, given the choices of the other parameters, also demands a high q.
- **Horizontal buoyancy number**, Ra^H, measuring the strength of lateral variations in heat flux across the mantle boundary layer. The ratio $\epsilon = Ra^H/Ra^V$, which quantifies the peak-to-peak lateral variation of heat flux relative to the average radial heat flux at the core surface, was increased from 0 to 1 to explore the effect of the boundary condition; this range is reasonable from both mantle convection studies and the amplitude of anomalies in V_s.

No completely steady solution has been found but a strong inhomogeneity of $\epsilon = 0.9$ gives a field that varies very little over the whole calculation interval of 3 magnetic diffusion times, or about half a million years in dimensional units. This represents many turn-over times of the fluid. A snapshot from the model solution is shown in Fig. 2 c; Fig. 2 d shows the same solution truncated to spherical harmonic degree 14 for comparison with the geomagnetic field model. Given that we have successfully locked the model solution, the calculated and observed fields may be compared simply by comparing the centres of the 4 main lobes (Table 1); a more sophisticated procedure is not justified at this stage because of the simplicity of the model and because we only seek to explain the persistence of the main lobes. The coincidence of the two eastern lobes, the Siberian lobe and its southern hemisphere counterpart, is remarkable. The Canadian lobe is on average slightly further west in the Earth, however, this lobe split in half during the 19th century, making comparison difficult. Its southern counterpart is also further south and west, but it has been moving consistently southwest throughout the historical period and in 1750 A.D. was at 60°S, 96° W (Fig. 2a), much closer to the location of the corresponding patch in the model. The motion of this lobe is associated with the development of a patch of reversed flux to the northeast, dating from about 1770 A.D. Its present location may therefore be a recent temporary feature and its normal location may lie closer to that of the model. The relative instability of the Canadian pair seen in the historical record is also reflected in the model, where the corresponding pair is also more mobile than the Siberian

<table>
<thead>
<tr>
<th></th>
<th>Canada</th>
<th>Siberia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth</td>
<td>52° N 110° W</td>
<td>59° N 108° E</td>
</tr>
<tr>
<td>Model</td>
<td>55° N 74° W</td>
<td>55° N 112° E</td>
</tr>
<tr>
<td>Earth</td>
<td>68° S 109° W</td>
<td>56° S 117° E</td>
</tr>
<tr>
<td>Model</td>
<td>56° S 74° W</td>
<td>56° S 114° E</td>
</tr>
</tbody>
</table>

The geomagnetic field (“Earth”) was averaged every 50 years over the 400-year historical model (Jackson et al., 2000); the dynamo field (“Model”) was averaged over 10 snapshots from the 3 magnetic diffusion times of the simulation.

![Image](https://via.placeholder.com/150)
pair. For a run with weaker mantle anomalies, $\epsilon = 0.6$, the Siberian pair remains fairly stable while the Canadian pair occasionally disappears altogether. This suggests the seismic anomaly is strongest for the Siberian locations, an idea supported by strong D seismic reflections from the region (Wysession et al., 1998).

Near the equator, flux tends to be concentrated near the favoured longitudes in a clover-leaf pattern (Fig. 2c) In the $\epsilon = 0.6$ model there is increased activity near the equator, and pairs of patches are often observed to migrate in longitude. This clover-leaf pattern is known to result from strong downwelling in kinematic studies (Gubbins et al., 2000). It arises when vertical shear twists the azimuthal toroidal field within the core into the vertical plane, producing a north–south pair of flux spots of sign opposite to that of the main dipolar field. Two further flux spots, which have the same sign as the main dipolar field, are produced to the west of this pair. For a run with weaker mantle anomalies, $\epsilon = 0.6$, the Siberian pair remains fairly stable while the Canadian pair occasionally disappears altogether. This suggests the seismic anomaly is strongest for the Siberian locations, an idea supported by strong D seismic reflections from the region (Wysession et al., 1998).

References

Acknowledgement

This work was supported by NERC consortium grant O/2001/00668.